Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / December

AP Physics C: Mechanics

  • Dec 08, 2017
  • Shawn
  • AP Physics C Mechanics
  • No comments yet
This page is no longer used. Please go to https://mech.shawnzhong.com. Thank you.   Notes and Exercises on AP Physics C: Mechanics Your comments and criticism are greatly welcomed.

Video Link

Educator.com

Table of Contents

1.1 - What is Physics?

1.2 - Math Review

2.1 - Describing Motion I

2.2 - Describing Motion II

2.3 - Projectile Motion

2.4 - Circular & Relative Motion

3.1 - Newton's First Law & Free Body Diagrams

3.2 - Newton's Second & Third Laws of Motion

3.3 - Friction

3.4 - Retarding & Drag Forces

3.5 - Ramps & Inclines

3.6 - Atwood Machines

4.1 - Work

4.2 - Energy & Conservative Forces

4.3 - Conservation of Energy

4.4 - Power

5.1 - Momentum & Impulse

5.2 - Conservation of Linear Momentum

5.3 - Center of Mass

6.1 - Uniform Circular Motion

7.1 - Rotational Kinematics

7.2 - Moment of Inertia

7.3 - Torque

7.4 - Rotational Dynamics

7.5 - Angular Momentum

8.1 - Oscillations

9.1 - Gravity & Orbits

Read More >>

Math 375 – 12/13

  • Dec 13, 2017
  • Shawn
  • Math 375
  • No comments yet
Question 1 • Find a basis in which the matrix (■8(3&0@3&−2)) becomes diagonalized • Let A=(■8(3&0@3&−2)) • det⁡(A−λI)=|■8(3−λ&0@3&−2−λ)|=λ^2−λ−6=0 • ⇒λ_1=3, λ_2=−2 • ⇒Λ=(■8(3&0@0&−2)) • When λ_1=3 ○ A−λI=(■8(0&0@3&−5)) ○ ⇒v_1=k(5,3), k∈R • When λ_2=−2 ○ A−λI=(■8(5&0@3&0)) ○ ⇒v_2=k(0,1), k∈R • The basis is (5,3), (0,1) Exercise 8.17 Question 8 • Find a Cartesian equation for the tangent plane • to the surface xyz=a^3 at a general point (x_0,y_0,z_0 ). ○ ∇f=(█(yz@xz@xy)) ○ H={(x,y,z)∈R3│∇f(x_0,y_0,z_0 )⋅(█(x−x_0@y−y_0@z−z_0 ))=0} ○ ={(x,y,z)∈R3│y_0 z_0 (x−x_0 )+x_0 z_0 (y−y_0 )+x_0 y_0 (z−z_0 )=0} ○ ={(x,y,z)∈R3│xy_0 z_0+x_0 yz_0+x_0 y_0 z=3x_0 y_0 z_0=3a^3 } Question 2 • Let f:R2→R smooth • Let g(x,y)=f(u,v)=f(sin⁡〖(x)y,x^y 〗 ) • Find g_x,g_y in terms of f_u,f_v ○ Let h(x,y)=[█(u(x,y)@v(x,y) )]=[█(sin⁡(x)y@x^y )], Then T_g=T_f∘T_ℎ ○ T_f=[■8(∂f/∂u&∂f/∂v)]=[■8(f_u&f_v )] ○ T_ℎ=[■8(∂u/∂x&∂u/∂y@∂v/∂x&∂v/∂y)]=[■8(cos⁡(x)y&sin⁡(x)@y⋅x^(y−1)&x^y (y ln⁡(x)+1) )] ○ T_g=T_f∘T_ℎ=[■8(f_u&f_v )][■8(cos⁡(x)y&sin⁡(x)@y⋅x^(y−1)&x^y (y ln⁡(x)+1) )]=[█(f_u cos⁡(x)y+f_v y⋅x^(y−1)@f_u sin⁡(x)+f_v x^y (y ln⁡(x)+1) )]^T ○ ⇒{█(g_x=f_u cos⁡(x)y+f_v y⋅x^(y−1)@g_y=f_u sin⁡(x)+f_v x^y (y ln⁡(x)+1) )┤
Read More >>

Math 375 – 12/12

  • Dec 12, 2017
  • Shawn
  • Math 375
  • No comments yet
Derivative of Vector Fields • Map ○ f:Rn→Rm ○ f(x_1,…,x_n )=[█(f_1 (x_1,…,x_n )@⋮@f_m (x_1,…,x_n ) )] • Example 1 ○ n=1, m=2 ○ f:R→Rn ○ f:t↦[█(f_1 (t)@f_2 (t) )]=[█(x(t)@y(t) )] ○ Also called parametric curve • Example 2 ○ f:Rn→R, where n≥2 ○ f is a function of n variables f(x_1,…,x_n ) • Example 3 ○ Rn→Rm, where n≥2, m≥2 ○ f:R2→R2 ○ f:(u,v)⟼(x,y) ○ Polar Coordinates § f(r,θ)=[█(x(r,θ)@y(r,θ) )]=[█(r cos⁡θ@r sin⁡θ )] • Example 4 ○ f(u,v)=[■8(2&3@1&−1@1&1)][█(u@v)]=[█(2u+3v@u−v@u+v)] • Definition ○ A map f:Rn→Rm is differentiable at a∈Rn if ○ f(a+y)=f(a)+T_a (y)+E(a,y)‖y‖ ○ Where T_a:Rn→Rm is a linear transformation, and lim_(y→0)⁡E(a,y)=0 • Theorem ○ f differentiable at a⇒f continuous at a • Theorem ○ If f(x)=[█(f_1 (x_1,…,x_n )@⋮@f_m (x_1,…,x_n ) )], and f_1,…,f_m have continuous partial derivatives ○ Then f is differentiable and T_a (y)=[■8((∂f_1)/(∂x_1 )&⋯&(∂f_1)/(∂x_n )@⋮&⋱&⋮@(∂f_m)/(∂x_1 )&⋯&(∂f_m)/(∂x_n ))][█(y_1@⋮@y_n )] • Example ○ f(r,θ)=[█(r cos⁡θ@r sin⁡θ )] ○ The linear transformation T_a has the matrix § mat(T_a )=[■8((∂f_1)/∂r&(∂f_1)/∂θ@(∂f_2)/∂r&(∂f_2)/∂θ)]=[■8(∂x/∂r&∂x/∂θ@∂y/∂r&∂y/∂θ)]=[■8(cos⁡θ&−r sin⁡θ@sin⁡θ&r cos⁡θ )] ○ At a=(√2,π/4) § mat(T_a )=[■8(√2∕2&−1@√2∕2&1)] § T_a [█(1@0)]=[█(√2∕2@√2∕2)] § T_a [█(0@1)]=[█(−1@1)] ○ In general § mat(T_((r,θ) ) )=[■8(cos⁡θ&−r sin⁡θ@sin⁡θ&r cos⁡θ )] § T_a [█(ε@0)]=ε[█(cos⁡θ@sin⁡θ )] § T_a [█(0@ε)]=εr[█(−sin⁡θ@cos⁡θ )] • Common notations ○ T_a (v)=df_a⋅v=Df(a)⋅v=f^′ (a)⋅v • Jacobian Matrix ○ [■8((∂f_1)/(∂x_1 )&⋯&(∂f_1)/(∂x_n )@⋮&⋱&⋮@(∂f_m)/(∂x_1 )&⋯&(∂f_m)/(∂x_n ))] is called Jacobian Matrix • Chain Rule ○ Given f:Rn→Rm, g:Rm→Rk ○ Consider h(x)=g(f(x))=g∘f(x) ○ {█(f is differentiable at x@g is differentiable at f(x) )┤⇒h=g∘f is differentiable at x ○ And d(g∘f)_x=dg_f(x) ⋅df_x ○ Another notation: (g∘f)^′ (x)=g^′ (f(x))⋅f^′ (x) ○ In components § x=[█(x_1@⋮@x_n )]∈Rn § u=[█(u_1@⋮@u_m )]=[█(f_1 (x)@⋮@f_m (x) )]=[█(f_1 (x_1,…,x_n )@⋮@f_m (x_1,…,x_n ) )]∈Rm § v=[█(v_1@⋮@v_k )]=[█(g_1 (u)@⋮@g_k (u) )]=[█(g_1 (u_1,…,u_m )@⋮@g_k (u_1,…,u_m ) )]=[█(g_1 (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n ))@⋮@g_k (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n )) )]∈Rn § mat[(g∘f)^′ ] § =[■8((∂v_1)/x_1 &⋯&(∂v_1)/x_n @⋮&⋱&⋮@(∂v_k)/x_1 &⋯&(∂v_k)/x_n )] § =[■8(∂/(∂x_1 ) g_1 (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n ))&⋯&∂/(∂x_n ) g_1 (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n ))@⋮&⋱&⋮@∂/(∂x_1 ) g_k (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n ))&⋯&∂/(∂x_n ) g_k (f_1 (x_1,…,x_n ),…,f_m (x_1,…,x_n )) )] § =[■8((∂g_1)/(∂u_1 )⋅(∂f_1)/(∂x_1 )+…+(∂g_1)/(∂u_m )⋅(∂f_m)/(∂x_1 )&⋯&(∂g_1)/(∂u_1 )⋅(∂f_1)/(∂x_n )+…+(∂g_1)/(∂u_m )⋅(∂f_m)/(∂x_n )@⋮&⋱&⋮@(∂g_k)/(∂u_1 )⋅(∂f_1)/(∂x_1 )+…+(∂g_k)/(∂u_m )⋅(∂f_m)/(∂x_1 )&⋯&(∂g_k)/(∂u_1 )⋅(∂f_1)/(∂x_n )+…+(∂g_k)/(∂u_m )⋅(∂f_m)/(∂x_n ))] § =[■8((∂g_1)/(∂u_1 )&⋯&(∂g_1)/(∂u_m )@⋮&⋱&⋮@(∂g_k)/(∂u_1 )&⋯&(∂g_k)/(∂u_m ))][■8((∂f_1)/(∂x_1 )&⋯&(∂f_1)/(∂x_n )@⋮&⋱&⋮@(∂f_m)/(∂x_1 )&⋯&(∂f_m)/(∂x_n ))] § =mat(g^′ (f(x)))mat(f^′ (x))
Read More >>

Math 375 – 12/11

  • Dec 11, 2017
  • Shawn
  • Math 375
  • No comments yet
Quiz Question • Given ○ A:R3→R3 ○ det⁡〖(A−2I)=0〗 ○ tr (A)=−2 ○ det⁡(A)=6 • Question: Eigenvalue of A ○ det⁡〖(A−2I)=0〗⇒2 is an eigenvalue ○ tr (A)=−2⇒∑_(i=1)^n▒λ_i =λ_1+λ_2+λ_3=−2 ○ det⁡(A)=6⇒∏_(i=1)^n▒λ_i =λ_1 λ_2 λ_3=6 ○ {█(█(λ_1=2@λ_1+λ_2+λ_3=−2)@λ_1 λ_2 λ_3=6)┤⇒{█(λ_2=−3@λ_3=−1)┤ ○ Therefore eigenvalues are 2, −1, −3 • Question: Characteristic Polynomial ○ f(λ)=(λ−λ_1 )(λ−λ_2 )(λ−λ_3 )=(λ−2)(λ+1)(λ+3) • Note: f(λ)=det⁡(λI−A) Question 1 • Given ○ f:R2\{0}→R ○ f(x,y)=xy/(x^2+y^2 ), ∀(x,y)∈R2 • Question: Find the direction of steepest decedent at (1,3) ○ ∇f(x,y)=[█(∂f/∂x@∂f/∂y)]=[█(y(y^2−x^2 )/(x^2+y^2 )^2 @x(x^2−y^2 )/(x^2+y^2 )^2 )] ○ ∇f(1,3)=[█(3(3^2−1^2 )/(1^2+3^2 )^2 @1(1^2−3^2 )/(1^2+3^2 )^2 )]=[█(6/25@−2/25)] • Question: Find the line best approximate the level set at (1,3) ○ ∇f(1,3)⋅n ⃗=0⇒n ⃗=[█(1@3)] ○ x+3y+c=0 ○ 1+3⋅3+c=0 ○ ⇒c=−10 ○ l: x+3y−10=0 ○ Alternative: ∇f(1,3)⋅[█(x−1@y−3)]=0 • Question: Estimate f(0.8,3.05) ○ f(0.8,3.05) ○ =f(1−0.2,3+0.05) ○ ≈f(1,3)+∇f(1,3)[█(−0.2@0.05)] ○ =3/(1^2+3^3 )+[█(6/25@−2/25)][█(−0.2@0.05)] ○ =0.248 Question 2 • Find a basis in which the matrix (■8(3&0@3&−2)) becomes diagonalized • Let A=(■8(3&0@3&−2)) • det⁡〖(A−λI)=λ^2−λ−6=0〗 • ⇒λ_1=3, λ_2=−2 • When λ_1=3 ○ A−λI=(■8(0&0@3&−5)) ○ ⇒v_1=(5,3) • When λ_2=−2 ○ A−λI=(■8(5&0@3&0)) ○ ⇒v_2=(0,1) • The basis is (5,3), (0,1)
Read More >>

Math 375 – 12/7

  • Dec 07, 2017
  • Shawn
  • Math 375
  • No comments yet
Differentiable • Theorems ○ f differentiable ⇒ f continuous ○ f differentiable ⇒f has partial derivative ○ T_a (v)=∂f/(∂x_1 ) (a) v_1+…+∂f/(∂x_n ) (a) v_n ○ f has continuous partial derivative ⇒f is differentiable • Example ○ There is a function f which has partial derivative everywhere ○ but is not continuous at (0,0) Chain Rule • Formula ○ d/dt f(x_1 (t),…,x_n (t))=∂f/(∂x_1 ) (dx_1)/dt+…+∂f/(∂x_n ) (dx_n)/dt • Proof ○ Let g(t)=f(x_1 (t),…,x_n (t)) § g(t+Δt)−g(t)=f(x_1 (t+Δt),…,x_n (t+Δt))−f(x_1 (t),…,x_n (t)) ○ Define Δx_k=x_k (t+Δt)−x_k (t), (k=1,…,n) § g(t+Δt)−g(t)=∂f/(∂x_1 ) (x)Δx_1+…+∂f/(∂x_n ) (x)Δx_n+Error ○ Derivative of g(t) § g^′ (t)=lim_(Δt→0)⁡〖(g(t+Δt)−g(t))/Δt〗 § =lim_(Δt→0)⁡(∂f/(∂x_1 ) (x) (Δx_1)/Δt+…+∂f/(∂x_n ) (x) (Δx_n)/Δt+Error/Δt) § =∂f/(∂x_1 ) (x) lim_(Δt→0)⁡((Δx_1)/Δt)+…+∂f/(∂x_1 ) (x) lim_(Δt→0)⁡((Δx_n)/Δt)+lim_(Δt→0)⁡(Error/Δt) ○ Note that § lim_(Δt→0)⁡((Δx_k)/Δt)=lim_(Δt→0)⁡((x_k (t+Δt)−x_k (t))/Δt)=(dx_k)/dt § lim_(Δt→0)⁡(Error/Δt)=0 ○ Therefore § g^′ (t)=∂f/(∂x_1 ) (dx_1)/dt+…+∂f/(∂x_n ) (dx_n)/dt • Gradient ○ g^′ (t)=f_(x_1 ) (x(t)) x_1^′ (t)+…+f_(x_n ) (x(t)) x_n^′ (t) ○ g^′ (t)=(█(f_(x_1 )@⋮@f_(x_n ) ))(█(x_1^′ (t)@⋮@x_n^′ (t) ))=∇ ⃗f(x ⃗ )⋅x ⃗^′ (t)=‖∇ ⃗f(x ⃗ )‖⋅‖x ⃗^′ (t)‖ cos⁡θ ○ ∇ ⃗f is called gradient ○ x ⃗^′ (t) is called velocity vector • Interpretation ○ (x_1 (t),…,x_n (t)) cordinates of a point moving in Rn (t=time) ○ Velocity vector: v(t)=x ⃗^′ (t)=lim_(Δt→0)⁡〖(x ⃗(t+Δt)−x ⃗(t))/Δt〗=(x_1^′ (t),…,x_n^′ (t)) ○ Example: Linear motion with constant velocity § x ⃗(t)=(x_1 (t),…,x_n (t))=p ⃗+t ⃗=(p_1+tv_1,…,p_n+tv_n ) § v(t)=x ⃗′(t)=(v_1,..,v_n ) ○ Example: Circular motion § x ⃗(t)=(█(cos⁡t@sin⁡t )) § v(t)=x ⃗′(t)=(█(−sin⁡t@cos⁡t )) ○ Example § f(x,y)=x^2+y^2 § ∇ ⃗f(x,y)=(█(f_x@f_y ))=(█(2x@2y)) • Theorem ○ f(x ⃗(t)) does not depend on t, if and only if ○ ∇ ⃗f(x ⃗(t))⊥x ⃗′(t) for all t • Proof ○ f(x ⃗(t)) constant for atb ○ ⟺d/dt (f(x ⃗(t)))=0 for atb ○ ⟺∇ ⃗f(x ⃗(t))⋅x ⃗(t)=0 for atb ○ ⟺∇ ⃗f(x ⃗(t))⊥x ⃗′(t) ○ Note: By convention 0 ⃗⊥any vector • Application: Gradient Decent ○ To decrease/increase f(x ⃗(t)), how should we choose x^′ (t) ○ Maximize/Minimize Condition § Maximal if cos⁡θ=+1, i.e. θ=0 § Minimal if cos⁡θ=−1, i.e. θ=π ○ Steepest Ascent/Descent ○ Pseudocode Level Sets • Definition ○ D⊆Rn open ○ If f:D→R, then ○ The level set of f at level c is ○ {x ⃗∈Rn│f(x ⃗ )=c}=f^(−1) (c) • Example ○ f(x,y,z)=x^2+y^2+z^2 ○ f^(−1) (1)={(x,y,z)∈R3 |x^2+y^2+z^2=1}=unit sphere ○ f^(−1) (0)={(x,y,z)∈R3 |x^2+y^2+z^2=0}=origin • Tangent ○ Let S⊆Rn, p∈S ○ Then v ⃗∈Rn is tangent to S ○ If there is a path x ⃗(t) with x ⃗(t_0 )=p and x^′ (t)=v ⃗, and x ⃗(t)∈S for all t • Theorem ○ If S=f^(−1) (c)={x ⃗∈Rn│f(x ⃗ )=c} ○ And v ⃗ is tangent to S at p∈S ○ Then ∇ ⃗f(p)⊥v ⃗ • Proof ○ Given v ⃗ is tangent to S ○ So there is a path x(t)∈S for all t with {█(x ⃗(t_0 )=p@x ⃗^′ (t)=v ⃗ )┤ ○ Since f(x ⃗(t))=c for all t ○ We have 0=d/dt f(x ⃗(t))=∇ ⃗f(x ⃗(t))⋅x ⃗^′ (t) ○ So at t=t_0, 0=∇ ⃗f(p)⋅v ⃗
Read More >>
  • 1
  • 2
  • 3
  • …
  • 8

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP