Math 514

Notes on Math 514: Numerical Analysis @ University of Wisconsin-Madison Your comments and criticism are greatly welcomed.

Textbook

An Introduction to Numerical Analysis - by Endre Süli

Course Notes (PDF version)

Ch 1: Simple Iteration Method

Ch 2: Solution of Systems of Linear Equations

LU Decomposition

QR Factorization

Norm & Condition Number

Ch 3: Special Matrices

Ch 4: Simultaneous Iteration Method

Ch 5: Eigen-Decomposition

Midterm Review

Ch 6-10: Approximation & Integration

Polynomial Approximation Theory

Polynomial Interpolation & Chebyshev Nodes

Polynomial Projection & Quadrature Method

Integration Rules & Undetermined Coefficients

Review for Approximation & Integration

Ch 12: Numerical ODE

Introduction to Numerical ODE

Euler & Trapezoidal & Runge-Kutta

Linear Multistep Methods & Stability

Review for Numerical ODE

Note: You can download a PDF version of the notes here

Math 632

Notes on Math 632: Introduction to Stochastic Processes @ University of Wisconsin-Madison Your comments and criticism are greatly welcomed.

Resources

Past Exams

Textbook: Essentials of stochastic processes by Rick Durrett

Homeworks: HW01 HW02 HW03 HW04 HW05 HW06 HW07 HW08

Lecture Notes (PDF version)

Week 1
9/6 Review, Introduction to Stochastic Processes
Week 2
9/11 Introduction to Markov Chain
9/13 Simple Random Walk, P^n, Gambler's Ruin
Week 3
9/18 T, Strong Markov Property, T_y, ρ_yy, Recurrence
9/20 Recurrence, Closed, Irreducible, Communication
Week 4
9/24 Theorems Related to Recurrence
9/27 Stationary Distribution/Measure, Renewal Chain
Week 5
10/2 Positive/Null Recurrent, Limit Behavior
10/4 Periodicity, Limiting Behavior
Week 6
10/9 Convergence Theorem
10/11 Midterm 1
Week 7
10/16 Doubly Stochastic, Detailed Balance
10/18 Exit Distribution
Week 8
10/23 Exit Time
10/25 Probability Review for Poisson Process
Week 9
10/30 Introduction to Poisson Process
11/1 Compound Poisson Process
Week 10
11/6 Thinning, Superposition, and Conditioning
11/8 Poisson Process Comprehensive Problems
Week 11
11/13 More Exercises on Poisson Process
11/15 Midterm 2
Week 12
11/20 Introduction to Renewal Process
11/22 Thanksgiving
Week 13
11/27 Renewal Process, Age and Residual Life
11/29 Continuous Time Markov Processes
Week 14
12/4 M/M/s Queue, Kolmogorov Equations
12/6 Properties of CTMC
Week 15
12/11 CTMC Exercises

Note: You can download a PDF version of the notes here

Math 240

Notes on Math 240: Introduction to Discrete Mathematics @University of Wisconsin-Madison Your comments and criticism are greatly welcomed.

Course Website

Homepage

Syllabus

Textbook

Kenneth H. Rosen, Discrete Mathematics and its Applications, seventh Edition

Lecture Notes

Download PDF

0. Introductory Lecture

1. The Foundations: Logic and Proofs

1.1 Propositional Logic

1.2 Applications of Propositional Logic

1.3 Propositional Equivalences

1.4 Predicates and Quantifiers

1.5 Nested Quantifiers

1.6 Rules of Inference

1.7 Introduction to Proofs

1.8 Proof Methods and Strategy

2. Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

2.1 Sets

2.2 Set Operations

2.3 Functions

2.4 Sequences and Summations

2.5 Cardinality of Sets

2.6 Matrices

3. Algorithms

3.1 Algorithms

3.2 The Growth of Functions

3.3 Complexity of Algorithms

4. Number Theory and Cryptography

4.1 Divisibility and Modular Arithmetic

4.2 Integer Representations and Algorithms

4.3 Primes and Greatest Common Divisors

4.4 Solving Congruences

5. Induction and Recursion

5.1 Mathematical Induction

5.2 Strong Induction and Well-Ordering

5.3 Recursive Definitions and Structural Induction

5.4 Recursive Algorithms

6. Counting

6.1 The Basics of Counting

6.2 The Pigeonhole Principle

6.3 Permutations and Combinations

6.4 Binomial Coefficients and Identities

6.5 Generalized Permutations and Combinations

7. Discrete Probability

7.1 An Introduction to Discrete Probability

9. Relations

9.1 Relations and Their Properties

9.3 Representing Relations

9.5 Equivalence Relations

9.6 Partial Orderings

10. Graphs

10.1 Graphs and Graph Models

10.2 Graph Terminology and Special Types of Graphs

10.3 Representing Graphs and Graph Isomorphism

10.4 Connectivity

11. Trees

11.1 Introduction to Trees

Lecture Slides

Past Exams

Spring 2002 - Exam 1

Spring 2002 - Exam 2

Spring 2002 - Final

Spring 2005 - Exam 1

Spring 2005 - Exam 2

Spring 2005 - Final

Spring 2008 - Exam 1

Spring 2008 - Exam 2

Spring 2008 - Exam 3

Spring 2008 - Final 

Spring 2011 - Exam 1 (ExamSolution)

Spring 2011 - Exam 2 (Part I, Part II, Solution)

Spring 2011 - Final (ExamSolution)

Spring 2015 - Exam 2

Spring 2016 - Exam 2

Math 521

Notes on Math 521: Analysis I @ University of Wisconsin-Madison Your comments and criticism are greatly welcomed.

Course Website

Homepage

Syllabus

Textbook

Rudin, W. Principles of Mathematical Analysis. Third Edition

Lecture Notes

Download PDF

Week 1
1/24 Number Systems, Irrationality of √2
1/26 Sets, Gaps in Q, Field
Week 2
1/29 Field, Order, Upper Bound and Lower Bound
1/31 Infimum and Supremum, Ordered Field
2/2 Ordered Field, Archimedean Property, Density of Q in R
Week 3
2/5 n-th Root of Real Number, Complex Numbers
2/7 Complex Numbers, Euclidean Spaces
2/9 Quiz
Week 4
2/12 Schwarz Inequality, Function, Cardinality
2/14 Finite and Infinite, Sequence
2/16 Set Operations, Countable and Uncountable
Week 5
2/19 Metric Space, Interval, Cell, Ball, Convex
2/21 Definitions in Metric Space
2/23 Neighborhood, Open and Closed, De Morgan's Law
Week 6
2/26 Open and Closed, Closure
2/28 Convergence and Divergence, Range, Bounded
3/2 Important Properties of Convergent Sequences
Week 7
3/5 Algebraic Limit Theorem
3/7 Convergence of Sequences in R^n, Compact Set
3/9 Exam 1
Week 8
3/12 Compact Subset, Cantor's Intersection Theorem
3/14 Nested Intervals Theorem, Compactness of k-cell
3/16 Heine-Borel, Weierstrass, Subsequence
Week 9
3/19 Cauchy Sequence, Diameter
3/21 Cauchy Sequence, Complete Metric Space, Monotonic
3/23 Upper and Lower Limits
Week 10
4/2 Some Special Sequences
4/4 Series, Cauchy Criterion for Series, Comparison Test
4/6 Convergence Tests for Series
Week 11
4/9 Power Series, Absolute Convergence, Rearrangement
4/11 Rearrangement, Limit of Functions
4/13 Exam 2
Week 12
4/16 Continuous Function and Open Set
4/18 Continuity and Compactness, Extreme Value Theorem
4/20 Uniform Continuity and Compactness
Week 13
4/23 Connected Set, Intermediate Value Theorem
4/25 Derivative, Chain Rule, Local Extrema
4/27 Mean Value Theorem, Monotonicity, Taylor's Theorem
Week 14
4/30 Riemann-Stieltjes Integral, Refinement
5/2 Fundamental Theorem of Calculus
5/4 Sequence of Functions, Uniform Convergence

Math 541

Notes on Math 541: Modern Algebra @ University of Wisconsin-Madison Your comments and criticism are greatly welcomed.

Course Website

Homepage

Syllabus

Textbook

Abstract Algebra, by Dummit and Foote, Third Edition, 2004

Lecture Notes

Download PDF

Week 1
1/24 Divides, Equivalence Relations
1/26 Well-ordering of Z
Week 2
1/29 Division Algorithm, gcd
1/31 Euclidean Algorithm
2/2 Equivalence Class, Z/nZ, Group
Week 3
2/5 Group, Well-definedness, Z/nZ
2/7 (Z/nZ)*, Properties of Group
2/9 Order, Symmetric Group
Week 4
2/12 Symmetric Group, Cycle
2/14 Homomorphism, Isomorphism
2/16 Order, Homomorphism, Subgroup
Week 5
2/19 Dihedral Groups, Subgroup
2/21 Cyclic Group, lcm, Order of g^a
2/23 Cyclic Subgroup, Generating Set of a Group
Week 6
2/26 Finitely Generated Group
2/28 Coset, Normal Subgroup
3/2 Exam 1
Week 7
3/5 Quotient Group, Index, Lagrange's Theorem
3/7 Corollaries of Lagrange's Theorem
3/9 The First & Second Isomorphism Theorems
Week 8
3/12 The Third Isomorphism Theorem
3/14 Transposition, Sign of Permutation
3/16 Homework 6, The Correspondence Theorem
Week 9
3/19 Sign of Permutation, Alternating Group
3/21 Subgroups of A_4, Group Action, Orbit, Stabilizer
3/23 Orbit, Stabilizer, Cayley's Theorem
Week 10
4/2 Conjugacy Class, The Class Equation
4/4 Cauchy's Theorem, Recognizing Direct Products
4/6 Homework 8, Properties of Finite Abelian Group
Week 11
4/9 Fundamental Theorem of Finite Abelian Groups
4/11 Definition of Ring
4/13 Exam 2
Week 12
4/16 Properties of Ring, Zero-Divisor, Unit
4/18 Field, Product Ring, Integral Domain
4/20 Product Ring, Finite Domain and Field, Subring
Week 13
4/23 Polynomial Ring, Ideal, Principal Ideal
4/25 Examples of Ideals, Quotient Ring
4/27 Isomorphism Theorems for Rings
Week 14
4/30 Generating Ideal, Maximal Ideal, Prime Ideal
5/2 Prime Ideal, Euclidean Domain
5/4 Review, Galois Theory

Math 375

Notes on Math 375: Topics in Multi-Variable Calculus and Linear Algebra Your comments and criticism are greatly welcomed.

Course Website

Syllabus

Lecture and Homework Schedule

Textbook

Calculus, Volume II, 2nd Edition, by Tom M. Apostol

Calendar

September

Mon (Dis) Tue (Lec) Wed (Dis) Thu (Lec) HW
- -  - 9/7 HW1
9/11 9/12 9/13 9/14 HW2
9/18 9/19 9/20 9/21 HW3
9/25 9/26 9/27 9/28 HW4

All notes from September in PDF format

October

Mon (Dis) Tue (Lec) Wed (Dis) Thu (Lec) HW
10/2 Exam 1 10/4 10/5 HW5
10/9 10/10 10/11 10/12 HW6
10/16 10/17 10/18 10/19 HW7
10/23 10/24 10/25 10/26 -
10/30 10/31  11/1  11/2 HW8

Midterm 1 Practice

All notes from October in PDF format

November

Mon (Dis) Tue (Lec) Wed (Dis) Thu (Lec) HW
 10/30 10/31 11/1 11/2 HW8
11/6 11/7 11/8 11/9 HW9
11/13 11/14 11/15 Exam 2 HW10
11/20 11/21 11/22 Holiday  -
11/27 11/28 11/29 11/30 HW11

Midterm 2 Practice 1

Midterm 2 Practice 2

All notes from November in PDF format

December

Mon (Dis) Tue (Lec) Wed (Dis) Thu (Lec) HW
12/4  12/5 12/6 12/7 HW12
12/11 12/12  12/13

Matrix Algebra Review

Lecture Outlines

Chapter 1: Linear Spaces

Week 01 - 9/7: Vector Space

Week 02 - 9/12: Proof Writing

Week 02 - 9/14: Subspace, Span of Vector Spaces, Linear Independence

Week 03 - 9/19: Linear Independence, Basis, Coordinates

Week 03 - 9/21: Theorems about Linear Dependence

Week 04 - 9/26: Inner Product, Length, Angle

Week 04 - 9/28: Distance, Triangle Inequality, Orthogonal, Gramm-Schmidt Process

Week 05 - 10/3: Midterm 1

Week 05 - 10/5: Best Approximation, Fourier Series

Chapter 2: Linear Transformations and Matrices

Week 06 - 10/10: Linear Transformations, Solving Systems of Equations

Week 06 - 10/12: Injective, Null Space, Range, Rank-Nullity Theorem

Week 07 - 10/17: Algebraic Operations on Linear Transformations, Injective, Inverse

Week 07 - 10/19: Matrix Representation of Linear Transformations, Matrix Multiplication

Week 08 - 10/24: Isomorphism Between Linear Transformations and Matrices, Solving Linear Equations using Matrix

Week 08 - 10/26: Solving Linear Equations

Chapter 3: Determinants

Week 09 - 10/31: Determinants

Week 09 - 11/2: Uniqueness Theorem, Properties of Determinants

Week 10 - 11/7: Determinant and Area, Inverse of Matrix, Minors and Cofactors

Week 10 - 11/9: Cofactor Expansion, Cramer's Rule, Linear Independence and Determinant

Chapter 4: Eigenvalues and Eigenvectors

Week 11 - 11/14: Eigenvalues, Eigenvectors

Week 11 - 11/16: Midterm 2

Week 12 - 11/21: Characteristic Polynomial, Trace, Diagonalization

Week 12 - 11/23: Thanksgiving Break

Chapter 8: Differential Calculus of Scalar and Vector Fields

Week 13 - 11/28: Open Balls, Limits, Continuity, Directional Derivative

Week 13 - 11/30: Partial Derivative, Total Derivative, Linear Approximation Formula

Week 14 - 12/5: Differentiable, Total Derivative, Continuity, Multivariable Chain Rule

Week 14 - 12/7: Differentiable, Chain Rule, Gradient, Level Sets

Week 15 - 12/12: Multivariable Chain Rule, Jacobian Matrix

线性代数 Linear Algebra

「万门大学」线性代数的学习笔记,欢迎指正。

PDF Notes

Download All

Table of Contents

第1讲 预备知识

  1. 什么是线性代数
  2. 多项式基础
  3. 排列与逆序
  4. 连加号

第2讲 行列式

  1. 二阶与三阶行列式
  2. n阶行列式的定义
  3. 用定义计算行列式

第3讲 行列式的性质

  1. 行列式的性质(一)
  2. 行列式的性质(二)
  3. 用行列式的性质进行计算

第4讲 行列式按行(列)展开

  1. 代数余子式
  2. 行列式按一行(列)的展开
  3. 范德蒙行列式
  4. 行列式按多行(列)的展开

第5讲 行列式的计算

  1. 基本篇
  2. 技巧篇I—利用行列式性质
  3. 技巧篇II—利用行列式的展开
  4. 提高篇

第6讲 克莱姆法则

  1. 二元和三元线性方程组
  2. 克莱姆法则
  3. 法则用于计算
  4. 法则的理论意义

第7讲 矩阵

  1. 矩阵的概念
  2. 矩阵的线性运算
  3. 线性空间

第8讲 矩阵乘法

  1. 矩阵乘法的定义
  2. 矩阵乘法的性质(一)
  3. 矩阵乘法的性质(二)
  4. 矩阵乘法的性质(三)
  5. 矩阵的其他运算(一)
  6. 矩阵的其他运算(二)

第9讲 特殊矩阵

  1. 对角矩阵
  2. 三角形矩阵
  3. 对称矩阵

第10讲 矩阵的逆

  1. 逆矩阵的概念
  2. 用伴随矩阵求逆(一)
  3. 用伴随矩阵求逆(二)
  4. 逆矩阵的性质
  5. 伴随矩阵的性质(一)
  6. 伴随矩阵的性质(二)

第11讲 分块矩阵

  1. 矩阵的分块
  2. 分块矩阵的乘法
  3. 分块矩阵的行列式

第12讲 矩阵的初等变换

  1. 初等变换
  2. 初等矩阵
  3. 矩阵等价(一)
  4. 矩阵等价(二)
  5. 关于初等变换的重要定理
  6. 用初等变换求逆

第13讲 矩阵的秩

  1. 秩的概念(一)
  2. 秩的概念(二)
  3. 秩的性质
  4. 化阶梯形求秩(一)
  5. 化阶梯形求秩(二)
  6. 化阶梯形求秩(三)

第14讲 线性方程组

  1. 消元解法(一)
  2. 消元解法(二)
  3. 解的情况(一)
  4. 解的情况(二)
  5. 解的情况(三)

第15讲 向量

  1. 向量及其线性运算(一)
  2. 向量及其线性运算(二)
  3. 向量的点积与叉积(一)
  4. 向量的点积与叉积(二)
  5. 空间中的直线与平面(一)
  6. 空间中的直线与平面(二)

第16讲 向量组

  1. 线性组合与线性表示(一)
  2. 线性组合与线性表示(二)
  3. 线性相关性
  4. 相关性定理(一)
  5. 相关性定理(二)

第17讲 向量组的秩

  1. 极大无关组(一)
  2. 极大无关组(二)
  3. 向量组的秩与矩阵的秩
  4. 关于秩的重要定理(一)
  5. 关于秩的重要定理(二)

第18讲 线性方程组解的结构

  1. 齐次线性方程组解的结构
  2. 基础解系(一)
  3. 基础解系(二)
  4. 非齐次线性方程组解的结构(一)
  5. 非齐次线性方程组解的结构(二)

第19讲 特征值与特征向量

  1. 概念(一)
  2. 概念(二)
  3. 几个例子
  4. 基本性质(一)
  5. 基本性质(二)
  6. 基本性质(三)

第20讲 相似矩阵与矩阵对角化

  1. 矩阵的相似(一)
  2. 矩阵的相似(二)
  3. 可对角化条件(一)
  4. 可对角化条件(二)
  5. 可对角化条件(三)
  6. 约当标准形简介

第21讲 实对称矩阵

  1. 正交向量组
  2. 施密特正交化(一)
  3. 施密特正交化(二)
  4. 正交矩阵
  5. 实对称矩阵(一)
  6. 实对称矩阵(二)

第22讲 二次型

  1. 二次型及其矩阵表示
  2. 合同
  3. 二次型的标准形
  4. 二次型的规范形

第23讲 正定二次型

  1. 二次型的有定性
  2. 正定性的判定
  3. 正定性的应用

第24讲 线性空间(一)

  1. 线性空间的定义
  2. 维数、基与坐标
  3. 线性子空间

第25讲 线性空间(二)

  1. 基变换与坐标变换(一)
  2. 基变换与坐标变换(二)
  3. 线性空间的同构(一)
  4. 线性空间的同构(二)

第26讲 线性变换

  1. 定义与性质
  2. 线性变换的运算(一)
  3. 线性变换的运算(二)
  4. 线性变换的矩阵表示 (一)
  5. 线性变换的矩阵表示 (二)
  6. 线性变换的矩阵表示 (三)

第27讲 欧几里得空间

  1. 广义内积(一)
  2. 广义内积(二)
  3. 标准正交基
  4. 正交变换

第28讲 线性代数的应用举例

  1. 不相容方程组的最小二乘解
  2. 多项式插值
  3. 数值积分

抽象代数 Abstract Algebra

「万门大学」抽象代数的学习笔记,欢迎指正。

Table of Contents

第1讲 集合的定义

第2讲 集合的运算

第3讲 集合间的关系

第4讲 映射

第5讲 罗素悖论(选修)

第6讲 势与基数(选修)

第7讲 定义良好

第8讲 群的定义

第9讲 子群与生成

第10讲 循环群与阶

第11讲 陪集与指数

第12讲 拉格朗日定理

第13讲 共轭与正规子群

第14讲 商群

第15讲 同态与同构

第16讲 群同构定理

第17讲 群作用

第18讲 合成列(选修)

第19讲 自由群(选修)

第20讲 稳定子,中心化, 正规化子

第21讲 类等式定理

第22讲 n次对称群

第23讲 自同构

第24讲 Z/n

第25讲 半直积

第26讲 西罗定理(选修)

第27讲 西罗定理的应用(选修)

第28讲 可解群

CS/ECE 252

CS/ECE 252: Introduction to Computer Engineering Source: http://ece252.engr.wisc.edu/
Universal Computing Devices MP4 Flash
Trends and Complexity MP4 Flash
Abstraction MP4 Flash
Electrical Information MP4 Flash
Number Representation MP4 Flash
Base Conversion MP4 Flash
Counting MP4 Flash
Arithmetic MP4 Flash
Signed Numbers MP4 Flash
Sign Extension and Overflow MP4 Flash
Fixed- and Floating-Point MP4 Flash
ASCII MP4 Flash
Logic Functions MP4 Flash
Combinational Logic MP4 Flash
Combinational Building Blocks MP4 Flash
Sequential Logic and Flip-Flops MP4 Flash
Finite State Machines MP4 Flash
Registers and Memory MP4 Flash
Basic Processor Model MP4 Flash
Instructions and the Instruction Cycle MP4 Flash
LC-3 ISA and Processor Overview MP4 Flash
LC-3 Operate Instructions MP4 Flash
Simple Programs with LC-3 Operate Instructions MP4 Flash
Basic LC-3 Data Movement MP4 Flash
More LC-3 Data Movement MP4 Flash
LC-3 Control Flow MP4 Flash
Programming Techniques MP4 Flash
LC-3 Assembly Language MP4 Flash
LC-3 Memory Allocation MP4 Flash
LC-3 Assembler MP4 Flash
Subroutines MP4 Flash
Programming With Subroutines MP4 Flash
I/O Concepts MP4 Flash
LC-3 I/O MP4 Flash
Operating Systems MP4 Flash
LC-3 TRAPs MP4 Flash

CS/ECE 352

CS/ECE 352: Digital System Fundamentals Source: http://ece352.engr.wisc.edu/ 
Fundamentals Review MP4 Flash
Binary Coded Decimal, Counting MP4 Flash
Boolean Algebra MP4 Flash Slide
Standard Forms MP4 Flash Slide
Universal Gates MP4 Flash Slide
Introduction to K-Maps MP4 Flash Slide
Optimization with K-Maps MP4 Flash Slide
Don't-Cares MP4 Flash Slide
Decoders and Encoders MP4 Flash Slide
Multiplexers MP4 Flash Slide
Tristates MP4 Flash Slide
Implementation Technology MP4 Flash Slide
Arithmetic Structures MP4 Flash Slide
ALUs MP4 Flash Slide
Re-examining Carry Bits MP4 Flash Slide
Carry Look-Ahead Adders MP4 Flash Slide
D Latches and FFs MP4 Flash Slide
Intro to Sequential Circuits MP4 Flash Slide
State Diagrams MP4 Flash Slide
Sequential Circuit Design Overview MP4 Flash Slide
State Minimization MP4 Flash Slide
FSM Design and Verification MP4 Flash Slide
Flip-Flop Timing Parameters MP4 Flash Slide
Sequential Circuit Timing MP4 Flash Slide
One-Hot State Machines MP4 Flash Slide
Other Flip-Flop Types MP4 Flash Slide
Registers MP4 Flash Slide
Register Design MP4 Flash Slide
Intro to Complex FSMs MP4 Flash Slide
Complex FSMs MP4 Flash Slide
Pipelining MP4 Flash Slide
Serial Transfers MP4 Flash Slide
Registers with Shared Logic MP4 Flash Slide
Basic Processor Structure MP4 Flash Slide
Operation of a Basic Processor MP4 Flash Slide
Intro to Memory MP4 Flash Slide
SRAM Design MP4 Flash Slide
SRAM Arrays MP4 Flash Slide

JsSpim

JsSpim (link: https://shawnzhong.github.io/JsSpim/) is an online MIPS32 simulator based on Prof. James Larus's Spim.
Spim is a self-contained simulator that runs MIPS32 programs. It reads and executes assembly language programs written for this processor. Spim also provides a simple debugger and minimal set of operating system services. Spim does not execute binary (compiled) programs. Spim implements almost the entire MIPS32 assembler-extended instruction set. (It omits most floating point comparisons and rounding modes and the memory system page tables.) The MIPS architecture has several variants that differ in various ways (e.g., the MIPS64 architecture supports 64-bit integers and addresses), which means that Spim will not run programs for all MIPS processors.
The source code is published at GitHub

Screenshot

image-20190530030929768

Screen Record

Features

  • Click on an instruction to toggle breakpoint
  • Use the range slider to control the execution speed
  • Highlight on changed registers, data segment, and stack
  • Radix support for all values

Built With

  • Spim - The original simulator written in C++
  • Emscripten - Toolchain to compile C++ source code to WebAssembly using the LLVM IR.
  • Bootstrap - Using the CSS library to build the UI
  • highlight.js - For highlighting the source code

xv6 File System Visualizer

This is an online visualizer for xv6 file system image. The source code is published at GitHub

Screenshot

screenshot

Screen Record

Features

  • See the overall layout of an xv6 filesystem image
  • View the metadata storoed in inodes
  • Trace the relationship between files/directories, inodes, and blocks
  • Check the file/directory path for inodes
  • Basic inconsistency checking:
    • Invalid inode type.
    • Inode marked use but not found in a directory.
    • Inode referred to in directory but marked free.
    • Block used by inode but marked free in bitmap.
    • Bitmap marks block in use but it is not in use.