Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2018 / February / 19

Math 521 – 2/19

  • Feb 19, 2018
  • Shawn
  • Math 521
  • No comments yet
Metric Space • Definition ○ A set X of points is called a metric space if ○ there exists a metric or distance function d(p,q):X×X→R such that § Positivity □ d(p,q)0 if p,q∈X and p≠q □ d(p,p)=0 for all p∈X § Symmetry □ d(p,q)=d(q,p) for all p,q∈X § Triangle Inequality □ d(p,q)≤d(p,r)+d(r,q) for all p,q,r∈X • Example 1 ○ X=Rk ○ d(p ⃗,q ⃗ )=|p ⃗−q ⃗ | ○ If k=1, this is just standard numerical absolute value ○ and d is distance on the number line • Example 2 (Taxicab metric) ○ X=R2 ○ d((p_1,p_2 ),(q_1,q_2 ))=|p_1−q_1 |+|p_2−q_2 | where p_1,p_2,q_1,q_2∈R ○ Is this a true metric space? ○ Positivity § Clearly d((p_1,p_2 ),(q_1,q_2 ))≥0 since it is a sum of absolute values § Suppose d((p_1,p_2 ),(q_1,q_2 ))=0 □ |p_1−q_1 |+|p_2−q_2 |=0 □ |p_1−q_1 |=−|p_2−q_2 | □ {█(|p_1−q_1 |=0@|p_2−q_2 |=0)┤⇒{█(p_1=q_1@p_2=q_2 )┤ □ i.e. (p_1,p_2 )=(q_1,q_2 ) § Suppose (p_1,p_2 )=(q_1,q_2 ) □ d((p_1,p_2 ),(q_1,q_2 ))=|p_1−q_1 |+|p_2−q_2 |=|0|+|0|=0 § Thus d((p_1,p_2 ),(q_1,q_2 ))=0 iff (p_1,p_2 )=(q_1,q_2 ) ○ Symmetry § d((p_1,p_2 ),(q_1,q_2 ))=|p_1−q_1 |+|p_2−q_2 | § =|q_1−p_1 |+|q_2−p_2 |=d((q_1,q_2 ),(p_1,p_2 )) ○ Triangular Inequality § d((p_1,p_2 ),(r_1,r_2 ))+d((r_1,r_2 ),(q_1,q_2 )) § =|p_1−r_1 |+|p_2−r_2 |+|r_1−q_1 |+|r_2−q_2 | § =(|p_1−r_1 |+|r_1−q_1 |)+(|p_2−r_2 |+|r_2−q_2 |) § ≥|p_1−r_2+r_1−q_1 |+|p_2−r_2+r_2−q_2 | by Triangle Inequality of R § =|p_1−q_1 |+|p_2−q_2 | § =d((p_1,p_2 ),(q_1,q_2 )) Definition 2.17 • Interval ○ Segment (a,b) is {x∈Raxb} (open interval) ○ Interval [a,b] is {x∈Ra≤x≤b} (closed interval) ○ We can also have half-open intervals: (a,b] and [a,b) • k-cell ○ If a_ib_i for i=1,2,…,k ○ The set of points x ⃗=(x_1,x_2,…,x_k ) in Rk ○ that satisfy a_i≤x_i≤b_i (1≤i≤k) is called a k-cell • Ball ○ If x ⃗∈Rk and r0 ○ the open ball with center x ⃗ with radius r is {y ⃗∈Rk│|x ⃗−y ⃗ |r} ○ the closed ball with center x ⃗ with radius r is {y ⃗∈Rk│|x ⃗−y ⃗ |≤r} • Convex ○ We call a set E⊂Rk convex if ○ λx ⃗+(1−λ) y ⃗∈E, ∀x ⃗,y ⃗∈E, 0λ1 ○ i.e. All points along a straight line from x ⃗ to y ⃗ and between x ⃗ and y ⃗ is in E • Example: Balls are convex ○ Given an open ball with center x ⃗ and radius r ○ If y ⃗,z ⃗∈B, then |y ⃗−x ⃗ |r and |z ⃗−x ⃗ |r ○ |λz ⃗+(1−λ) y ⃗−x ⃗ | ○ =|λz ⃗+(1−λ) y ⃗−(λ+1−λ) x ⃗ | ○ =|λz ⃗−λx ⃗+(1−λ) y ⃗−(1−λ) x ⃗ | ○ ≤|λz ⃗−λx ⃗ |+|(1−λ) y ⃗−(1−λ) x ⃗ | by Triangle Inequality ○ =λ|z ⃗−x ⃗ |+(1−λ)|y ⃗−x ⃗ | ○ λr+(1−λ)r=r ○ Thus |λz ⃗+(1−λ) y ⃗−x ⃗ |r ○ i.e. λz ⃗+(1−λ) y ⃗∈B Definition 2.18 (a) Neighborhood (b) Limit point (c) Isolated point (d) Closed (e) Interior point (f) Open (g) Complement (h) Perfect (i) Bounded (j) Dense
Read More >>

Math 521 – 2/16

  • Feb 19, 2018
  • Shawn
  • Math 521
  • No comments yet
Set-Theoretic Operations • Set theoretic union ○ ⋃24_(n=1)^∞▒A_n =A_1∪A_2∪A_3∪⋯ • Set theoretic intersection ○ ⋂24_(n=1)^∞▒A_n =A_1∩A_2∩A_3∩⋯ • Indexing set ○ ⋃8_(α∈A)▒E_α , where ○ A is an indexing set ○ E_α is a specific set that depends on A • Example ○ Let A={x∈R0x≤1} ○ Let E_α={x∈R0xa} ○ Then⋃8_(α∈A)▒E_α =(0,1) and ⋂8_(α∈A)▒E_α =∅ Theorem 2.12 • Statement ○ Let {E_n }_(n∈N be a sequence of countable sets, then ○ S=⋃24_(n=1)^∞▒E_n is also countable • Proof ○ Just like the proof that Q is countable ○ E_n={〖x_n〗_k }={〖x_n〗_1,〖x_n〗_2,〖x_n〗_3,…} ○ ■(x_11&x_12&x_13&x_14&…&@x_21&x_22&x_23&⋱&&@x_31&x_32&⋱&&&@x_41&⋱&&&&@⋮&&&&&) ○ Go along the diagonal, we have ○ S={x_11,x_21,x_12,x_31,x_22,x_13…} • Corollary ○ Suppose A is at most countable ○ If for α∈A, B_α is at most countable, then ○ T=⋃8_(α∈A)▒B_α is also at most countable Theorem 2.13 • Statement ○ Let A be a countable set ○ Let B_n be the set of all n-tuples (a_1,a_2,…a_n ) where a_k∈A for 1≤k≤n ○ And a_k may not be distinct, then B_n is countable • Proof ○ We proof by induction on n ○ Base case: n=2 § ■((a_1,a_1 )&(a_1,a_2 )&(a_1,a_3 )&(a_1,a_4 )&…&@(a_2,a_1 )&(a_2,a_2 )&(a_2,a_3 )&⋱&&@(a_3,a_1 )&(a_3,a_2 )&⋱&&&@(a_4,a_1 )&⋱&&&&@⋮&&&&&) § Here a_i are all the elements of A with possible repetition ○ Now assume for n=m (m≥2) § The set of m-tuples (a_1,a_2,…a_m ) are countable § Now we treat the (m+1)\-tuples as ordered pairs § (a_1,a_2,…a_(m+1) )=((a_1,a_2,…a_m ),a_(m+1) ) § By n=2 case, the set of (m+1)\-tuples is still countable Theorem 2.14 • Statement ○ Let A be the set of all sequqnecse whose digits are 0 and 1 ○ Then A is uncountable • Proof: Cantor
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP