Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / December / 11

Math 375 – 12/11

  • Dec 11, 2017
  • Shawn
  • Math 375
  • No comments yet
Quiz Question • Given ○ A:R3→R3 ○ det⁡〖(A−2I)=0〗 ○ tr (A)=−2 ○ det⁡(A)=6 • Question: Eigenvalue of A ○ det⁡〖(A−2I)=0〗⇒2 is an eigenvalue ○ tr (A)=−2⇒∑_(i=1)^n▒λ_i =λ_1+λ_2+λ_3=−2 ○ det⁡(A)=6⇒∏_(i=1)^n▒λ_i =λ_1 λ_2 λ_3=6 ○ {█(█(λ_1=2@λ_1+λ_2+λ_3=−2)@λ_1 λ_2 λ_3=6)┤⇒{█(λ_2=−3@λ_3=−1)┤ ○ Therefore eigenvalues are 2, −1, −3 • Question: Characteristic Polynomial ○ f(λ)=(λ−λ_1 )(λ−λ_2 )(λ−λ_3 )=(λ−2)(λ+1)(λ+3) • Note: f(λ)=det⁡(λI−A) Question 1 • Given ○ f:R2\{0}→R ○ f(x,y)=xy/(x^2+y^2 ), ∀(x,y)∈R2 • Question: Find the direction of steepest decedent at (1,3) ○ ∇f(x,y)=[█(∂f/∂x@∂f/∂y)]=[█(y(y^2−x^2 )/(x^2+y^2 )^2 @x(x^2−y^2 )/(x^2+y^2 )^2 )] ○ ∇f(1,3)=[█(3(3^2−1^2 )/(1^2+3^2 )^2 @1(1^2−3^2 )/(1^2+3^2 )^2 )]=[█(6/25@−2/25)] • Question: Find the line best approximate the level set at (1,3) ○ ∇f(1,3)⋅n ⃗=0⇒n ⃗=[█(1@3)] ○ x+3y+c=0 ○ 1+3⋅3+c=0 ○ ⇒c=−10 ○ l: x+3y−10=0 ○ Alternative: ∇f(1,3)⋅[█(x−1@y−3)]=0 • Question: Estimate f(0.8,3.05) ○ f(0.8,3.05) ○ =f(1−0.2,3+0.05) ○ ≈f(1,3)+∇f(1,3)[█(−0.2@0.05)] ○ =3/(1^2+3^3 )+[█(6/25@−2/25)][█(−0.2@0.05)] ○ =0.248 Question 2 • Find a basis in which the matrix (■8(3&0@3&−2)) becomes diagonalized • Let A=(■8(3&0@3&−2)) • det⁡〖(A−λI)=λ^2−λ−6=0〗 • ⇒λ_1=3, λ_2=−2 • When λ_1=3 ○ A−λI=(■8(0&0@3&−5)) ○ ⇒v_1=(5,3) • When λ_2=−2 ○ A−λI=(■8(5&0@3&0)) ○ ⇒v_2=(0,1) • The basis is (5,3), (0,1)
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP