Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / November / 7

Math 375 – 11/6

  • Nov 07, 2017
  • Shawn
  • Math 375
  • No comments yet
Find the Inverse of Matrix • Gauss-Jordan Elimination ○ (A│I)~(I│A^(−1) ) • Example ○ (■8(1&2&4@3&5&−7@0&0&1)│■(1&&@&1&@&&1))→(■8(1&2&4@0&−1&−13@0&0&1)│■(1&0&0@−3&1&0@0&0&1)) ○ →(■8(1&2&4@0&−1&−13@0&0&1)│■(1&0&0@−3&1&0@0&0&1))→(■8(1&2&4@0&−1&0@0&0&1)│■(1&0&0@−3&1&13@0&0&1)) ○ →(■8(1&2&0@0&−1&0@0&0&1)│■(1&0&−4@−3&1&13@0&0&1))→(■8(1&0&0@0&−1&0@0&0&1)│■(−5&2&22@−3&1&13@0&0&1)) ○ →(■8(1&0&0@0&1&0@0&0&1)│■(−5&2&22@3&−1&−13@0&0&1)) ○ Therefore (■8(1&2&4@3&5&−7@0&0&1))^(−1)=(■(−5&2&22@3&−1&−13@0&0&1)) Question 1 • Recall that the determinant is a polynomial in the entries of the matrix. • Find the coefficient of t^3 in the following polynomial |■8(2&3&−7&t@5&t&a&b@t&−1&0&55@1/2&3&c&−π)| • Answer: By cofactor expansion, the coefficient is c Question 2 • Suppose A is an orthogonal matrix, meaning A is invertible and A^(−1)=A^T • What possible value could the determinant of A have? • Answer: ○ |A^(−1) |=|A^T | ○ ⇒1/|A| =|A| ○ ⇒|A|=±1 Question 3 • Let V be the vector space of all (real) polynomials of degree 2 or less. • Using the basis 1,x,x^2, find the matrix of the linear map T:V→V given by • (Tf)(x)=f(x+2) for all f∈V and x∈R • Answer: ○ T(1)=1 ○ T(x)=2+x ○ T(x^2 )=4+4x+x^2 ○ ⇒M(T)=■(&■8(1&x&x^2 )@■8(1@x@x^2 )&(■8(1&2&4@0&1&4@0&0&1)) ) Question 4 • Let x,y,z,w be real numbers. • Compute the determinant of the following matrix • Answer: ○ |■8(1&x&x^2&x^3@1&y&y^2&y^3@1&z&z^2&z^3@1&w&w^2&w^3 )|=(w−z)(w−y)(w−x)(z−y)(z−x)(y−x)
Read More >>

Math 375 – Homework 9

  • Nov 07, 2017
  • Shawn
  • Math 375
  • No comments yet
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP