Shawn Zhong

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Shawn Zhong

钟万祥
  • Tutorials
  • Mathematics
    • Math 240
    • Math 375
    • Math 431
    • Math 514
    • Math 521
    • Math 541
    • Math 632
    • Abstract Algebra
    • Linear Algebra
    • Category Theory
  • Computer Sciences
    • CS/ECE 252
    • CS/ECE 352
    • Learn Haskell
  • AP Notes
    • AP Microecon
    • AP Macroecon
    • AP Statistics
    • AP Chemistry
    • AP Physics E&M
    • AP Physics Mech
    • CLEP Psycho

Home / 2017 / July / 6

第14讲 线性方程组

  • Jul 06, 2017
  • Shawn
  • Linear Algebra
  • No comments yet
14.1 消元解法 • 增广矩阵 ○ 系数矩阵+常数列 • 简化阶梯形 ○ 阶梯形 ○ 非零首元都是1 ○ 首元上下都为零 • 例1:有一组解 ○ {█(2x_1+2x_2−x_3=6@x_1−2x_2+4x_3=3@5x_1+7x_2+x_3=28)┤⇒{█(2x_1+2x_2−x_3=6@−3x_2+9/2 x_3=0@2x_2+7/2 x_3=13)┤⇒{█(2x_1+2x_2−x_3=6@x_2−3/2 x_3=0@13/2 x_3=13)┤⇒{█(x_1=1@x_2=3@x_3=2)┤ ○ (■8(2&2&−1&6@1&−2&4&3@5&7&1&28))⇒(■8(2&2&−1&6@0&−3&9/2&0@0&2&7/2&13))⇒(■8(2&2&−1&6@0&1&−3/2&0@0&0&13/2&13))⇒(■8(1&0&0&1@0&1&0&3@0&0&1&2)) • 例2:无穷多解 ○ {█(2x_1−x_2+3x_3=1@4x_1−2x_2+5x_3=4@2x_1−x_2+4x_3=−1)┤⇒{█(2x_1−x_2+3x_3=1@−x_3=2@x_3=−2)┤⇒{█(2x_1−x_2+3x_3=1@x_3=−2@0=0)┤⇒{█(x_1=7/2+1/2 x_2@x_3=−2)┤ ○ (■8(2&−1&3&1@4&−2&5&4@2&−1&4&−1))⇒(■8(2&−1&3&1@0&0&−1&2@0&0&1&−2))⇒(■8(2&−1&3&1@0&0&1&−2@0&0&0&0)) • 例3:无解 ○ {█(x_1+x_2+x_3=3@x_1+2x_2+x_3=4@x_1+x_3=1)┤⇒{█(x_1+x_2+x_3=3@x_2=1@−x_2=−2)┤⇒{█(x_1+x_2+x_3=3@x_2=1@0=−1)┤ ○ (■8(1&1&1&3@1&2&1&4@1&0&1&1))⇒(■8(1&1&1&3@0&1&0&1@0&−1&0&−2))⇒(■8(1&1&1&3@0&1&0&1@0&0&0&−1)) 14.2 解的情况 • 方程组{█(c_11 x_1+c_12 x_2+…+c_1n x_n=d_1@ c_22 x_2+…+c_2n x_n=d_2@ ⋮@ c_rr x_r+…+c_rn x_n=d_r@ 0=d_(r+1)@ 0=0@ ⋮@ 0=0)┤⇒(■(c_11&c_12&…&…&c_1n@&c_22&…&…&c_2n@&&…&…&⋮@&&c_rr&…&c_rn@&&&&0@&&&&0) │■8(d_1@d_2@⋮@d_r@d_(r+1)@0)) 解的情况 1. 若 d_(n+1)≠0⇒无解 § 0=d_(r+1)≠0 矛盾 2. 若 d_(n+1)=0 且 r=n⇒唯一解 § {█(c_11 x_1+c_12 x_2+…+c_1n x_n=d_1@ c_22 x_2+…+c_2n x_n=d_2@⋮@ c_nn x_n=d_n )┤ § 从后往前解出后代入可以求得{█(x_n=d_n/c_nn @x_(n−1)=…@⋮@x_1=…)┤ 3. 若 d_(n+1)=0 且 r<n⇒无穷多组解 § {█(c_11 x_1+c_12 x_2+…+c_1n x_n=d_1@ c_22 x_2+…+c_2n x_n=d_2@ ⋮@ c_rr x_r+…+c_rn x_n=d_r@ 0=0)┤ § ⇒{█(c_11 x_1+c_12 x_2+…+c_1r x_r=d_1−c_1n x_n…@⋮@c_rr x_r=d_r−c_rn x_n…)┤,即等式右边均为自由变量 • 用矩阵的秩来表示解的情况 ○ 对于 Ax ⃗=b ⃗,构造增广矩阵 (A,b ⃗ ) ○ 无解 § r(A,b)≠r(A)⇔r(A,b)>r(A)⇔r(A,b)=r(A)+1 ○ 有解 § r(A,b)=r(A) ○ 唯一解 § r(A,b)=r(A)=n ○ 无穷多组解 § r(A,b)=r(A)<n • 齐次线性方程组 Ax ⃗=0 ⃗ ○ 齐次线性方程组一定有零解,故只讨论两种解的情况 ○ 定理1 § 有非零解⇔无穷多解⇔r(A)<n § 只有零解⇔有唯一解⇔r(A)=n ○ 定理2 § 如果方程个数少于未知数个数,则有非零解 § 证明:将方程个数记为 m,则有 r(A)<m<n
Read More >>

Search

  • Home Page
  • Tutorials
  • Mathematics
    • Math 240 – Discrete Math
    • Math 375 – Linear Algebra
    • Math 431 – Intro to Probability
    • Math 514 – Numerical Analysis
    • Math 521 – Analysis I
    • Math 541 – Abstract Algebra
    • Math 632 – Stochastic Processes
    • Abstract Algebra @ 万门大学
    • Linear Algebra @ 万门大学
    • Category Theory
  • Computer Sciences
    • CS/ECE 252 – Intro to Computer Engr.
    • CS/ECE 352 – Digital System Fund.
    • Learn Haskell
  • Course Notes
    • AP Macroeconomics
    • AP Microeconomics
    • AP Chemistry
    • AP Statistics
    • AP Physics C: E&M
    • AP Physics C: Mechanics
    • CLEP Psychology
  • 2048 Game
  • HiMCM 2016
  • 登峰杯 MCM

WeChat Account

Categories

  • Notes (418)
    • AP (115)
      • AP Macroeconomics (20)
      • AP Microeconomics (23)
      • AP Physics C E&M (25)
      • AP Physics C Mechanics (28)
      • AP Statistics (19)
    • Computer Sciences (2)
    • Mathematics (300)
      • Abstract Algebra (29)
      • Category Theory (7)
      • Linear Algebra (29)
      • Math 240 (42)
      • Math 375 (71)
      • Math 514 (18)
      • Math 521 (39)
      • Math 541 (39)
      • Math 632 (26)
  • Projects (2)
  • Tutorials (11)

Archives

  • October 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017

WeChat Account

Links

RobeZH's thoughts on Algorithms - Ziyi Zhang
Copyright © 2018.      
TOP